
REFERENCES
Generated Text. 2025. arXiv: 2503 . 00258 [cs.CL]. URL: https :
//arxiv.org/abs/2503.00258.
[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. “Language Models
are Few-Shot Learners”. In: Advances in Neural Information Processing Sys-
tems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H.
Lin. Vol. 33. Curran Associates, Inc., 2020, pp. 1877–1901. URL: https:
/ / proceedings. neurips . cc /paper_ files/ paper / 2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.
[8] Rich Caruana. “Multitask learning”. In: Machine learning 28 (1997), pp. 41–
75.
[9] Tuhin Chakrabarty, Philippe Laban, and Chien-Sheng Wu. “Can AI writ-
ing be salvaged? Mitigating Idiosyncrasies and Improving Human-AI Align-
ment in the Writing Process through Edits”. In: Proceedings of the 2025 CHI
Conference on Human Factors in Computing Systems, CHI 2025, Yokohama-
Japan, 26 April 2025- 1 May 2025 . Ed. by Naomi Yamashita, Vanessa Ev-
ers, Koji Yatani, Sharon Xianghua Ding, Bongshin Lee, Marshini Chetty,
and Phoebe O. Toups Dugas. ACM, 2025, 1210:1–1210:33. DOI: 10 .
1145/3706598.3713559. URL: https://doi.org/10.1145/
3706598.3713559.
[10] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton.
“A Simple Framework for Contrastive Learning of Visual Representations”.
In: Proceedings of the 37th International Conference on Machine Learning.
Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of Machine
Learning Research. PMLR, July 2020, pp. 1597–1607. URL: https :/ /
proceedings.mlr.press/v119/chen20j.html.
[11] Yutian Chen, Hao Kang, Vivian Zhai, Liangze Li, Rita Singh, and Bhiksha
Raj. “Token Prediction as Implicit Classification to Identify LLM-Generated
Text”. In: Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing. Ed. by Houda Bouamor, Juan Pino, and Ka-
lika Bali. Singapore: Association for Computational Linguistics, Dec. 2023,
65